研究人员发现富锂层状氧化物这一高性能电极材料的结构可以与钙钛矿这一被广泛研究的固态电解质的结构间形成外延生长的界面,从而在原子尺度形成紧密、充分的固-固接触。

中国科学技术大学马骋教授课题组和清华大学南策文院士团队在锂电池固态电解质的研究上取得重要进展。研究者使用球差校正透射电镜对固态电解质和电极材料的界面进行观测,发现富锂层状结构的正极和钙钛矿结构的固态电解质之间可以形成外延界面。利用这一现象,研究者制备了倍率性能可与传统浆料涂覆正极相比的复合正极,为克服固态电池中电极-电解质接触差这一瓶颈提供了新思路。相关研究成果以”Atomically Intimate Contact between Solid Electrolytes and Electrodes for Li Batteries” 为题发表在Cell Press旗下的材料学旗舰期刊《Matter》上(DOI: https://doi.org/10.1016/j.matt.2019.05.004)。论文的第一作者是我校硕士研究生李富振同学。 

传统锂离子电池由于使用易燃且电化学窗口有限的有机液态电解质,普遍存在易燃、能量密度难以进一步提升等问题。相比于有机液态电解质,固态电解质大多不可燃,可以降低甚至消除电池起火的风险,同时具有更宽的电化学稳定窗口, 允许使用更高电压的正负极组合以提升电池的能量密度。近年的研究已发现了许多性能卓越的固态电解质。然而,主流电极材料也是固态物质。如果将液态电解质替换为固态电解质,那么电极和电解质之间将难以形成像固-液界面那样紧密充分的接触,严重影响锂离子在电极和电解质间传输的效率。这一瓶颈是固态电池最难克服的挑战之一。

固态锂电池电极-电解质接触问题研究取得重要进展

球差校正透射电镜的观测为解决这一问题提供了新思路。研究人员在使用电镜研究钙钛矿结构固态电解质Li0.33La0.56TiO3时,发现富锂层状氧化物这一高性能电极材料的结构可以与钙钛矿这一被广泛研究的固态电解质的结构间形成外延生长的界面,从而在原子尺度形成紧密、充分的固-固接触。研究者进一步对两者间外延界面进行深入分析,发现界面处每15个原子面就会形成一个错配位错,释放积累的应变。这一机制导致了此外延界面的形成并不要求电极和电解质具备相近的晶格尺寸,而是可以广泛发生于多种层状结构材料与钙钛矿结构材料体系之间。随后, 研究人员将这一结论用于实际的材料制备中,以层状电极材料0.54Li2TiO3-0.46LiTiO2晶体为模板将非晶Li0.33La0.56TiO3进行结晶制备出了原子级界面结合的电极-电解质复合正极材料,并对其进行了性能表征。结果显示此方法制备的固-固复合电极中活性物质与电解质之间结合充分程度接近固-液接触,并且其倍率性能也不亚于传统浆料涂覆技术制备的固-液复合物电极。该方法的提出为克服固态电池中电极-电解质接触差这一瓶颈提供了新思路。

上述研究得到了科技部国家重点研发计划、国家自然科学基金、中国科学技术大学创新团队培育基金等项目的资助。

电池网(微号:mybattery)主站、微博、微信、手机客户端及电池智库(邮件直投)等全媒体平台及资源,每日精选电池产业链主流新闻、信息、数据等内容,每天覆盖国内外近百万用户或读者,咨询热线:400-6197-660,投稿信箱:zlhz@itdcw.com。

电池网微信
[责任编辑:张倩]

免责声明:本文仅代表作者个人观点,与电池网无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

凡本网注明 “来源:XXX(非电池网)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。电话:400-6197-660-2 邮箱:119@itdcw.com

动力电池
固态电池
电解质