近日,中国科学技术大学化学与材料科学学院、合肥微尺度物质科学国家研究中心任晓迪教授团队联合火灾科学国家重点实验室王青松教授团队研究发现,利用分子间氢键的相互作用可以显著改善醚基电解液在电极界面的稳定性,并有效抑制锂金属电池热失控过程。

中国科大在锂电池高安全性电解液的研究中取得新进展

氢键相互作用及分子锚定电解液设计策略 图/中国科学技术大学

近日,来自中国科学技术大学的消息,中国科学技术大学化学与材料科学学院、合肥微尺度物质科学国家研究中心任晓迪教授团队联合火灾科学国家重点实验室王青松教授团队研究发现,利用分子间氢键的相互作用可以显著改善醚基电解液在电极界面的稳定性,并有效抑制锂金属电池热失控过程。相关成果以“Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries”为题发表在《自然•通讯》上。

锂金属电池因其超高的能量密度被视为下一代电池技术的有力竞争者,但面临着电解液稳定性和安全性的双重挑战。传统的碳酸酯类电解液虽然在锂离子电池中得到广泛应用,却难以兼容活泼的锂金属负极。相比之下,醚类电解液与锂金属有更好的相容性,但较差的抗氧化能力限制了其在高电压正极中的应用。提高电解液浓度虽然可以在一定程度上改善醚的电化学稳定性,却带来了成本增加、低温性能衰减等问题,更为棘手的是大量阴离子的存在会引发热失控等安全隐患。

中国科大在锂电池高安全性电解液的研究中取得新进展

锂金属电池电化学性能、表界面及安全性研究 图/中国科学技术大学

基于分子锚定概念设计的电解液展现出优异的高压性能。在Li+/溶剂摩尔比低至1:9的条件下,这种电解液即使在4.7V的高压下也没有明显的氧化分解。高电压锂金属电池的容量保持率和库仑效率均远超传统的高浓电解液。为了揭示其本质机制,研究人员开展了系统的表界面分析。光谱和理论计算的结果一致表明,在高浓电解液中,阴离子和溶剂分子形成配位结构,使电解液的氧化分解倾向大大增加;而在分子锚定电解液中,溶剂分子之间通过氢键形成稳定复合物,有利于提升电解液的热力学稳定性。此外,由于减少了活泼阴离子的使用,分子锚定电解液在高电压正极表面诱导形成的界面膜也更薄更稳定。

研究人员进一步考察了电解液的安全性能。在锂金属软包电池中,当温度升高到140°C左右,高浓电解液与锂金属剧烈反应并放出大量热量,而分子锚定电解液与锂的相容性得到大幅提升。分子锚定电解液则可以将热失控开始的温度推迟到209°C以上。这项工作证明,设计合理的分子间相互作用可以从根本上改变电解液的性能,为未来电池电解液的分子工程提供了新的方向。

[责任编辑:林音]

免责声明:本文仅代表作者个人观点,与电池网无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性,本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。涉及资本市场或上市公司内容也不构成任何投资建议,投资者据此操作,风险自担!

凡本网注明 “来源:XXX(非电池网)”的作品,凡属媒体采访本网或本网协调的专家、企业家等资源的稿件,转载目的在于传递行业更多的信息或观点,并不代表本网赞同其观点和对其真实性负责。

如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理、删除。电话:400-6197-660-2 邮箱:119@itdcw.com

电池网微信
锂电池
中国科大
电解液